台风论坛

 找回密码
 立即注册
搜索
热搜: 台风
查看: 2869|回复: 3

[小组翻译] JMA2010年气候监测报告——Preface和Topic部分

[复制链接]

1025

主题

1万

帖子

1万

积分

超强台风

积分
18598
发表于 2011-11-22 16:16 | 显示全部楼层 |阅读模式
preface.GIF

序言

根据JMA公布的历史数据,日本2010年夏季6-8月的平均气温是1898年以来113年的最高值。极端高温给社会和经济的许多方面造成了严重的影响。对全球来讲,破纪录的高温出现在了俄罗斯西部,极端强降水造成巴基斯坦整个2010年夏季的大范围洪涝。由于极端的天气/气候现象给社会和经济造成了如此严重的影响,向用户提供气候信息显得尤为重要。在这种情况下,全球气候服务框架——推广使用气候信息的开始——的发展在2011年5-6月召开的第16届世界气象大会上被提上议程。

JMA在2010年提高了对温室气体(GHG)排放和海洋碳汇的观测能力,也开始用航空手段对高层大气的温室气体进行观测。这些观测得到了全球陆地、海洋、大气的温室气体概况,将对治理全球变暖工程的发展做出贡献。

1996年以来,JMA每年都发布气候变化监测报告年度评估。这些报告介绍了JMA的研究成果,包括大气、海洋、环境监测和分析,提供世界和日本的每日气候状况信息。这些研究也针对前面提到的温室气体最新观测和日本的极端酷暑现象。

我希望本报告能帮助读者更好地认识气候的最新状况,采取措施阻止全球变暖,保护地球环境。我们欢迎读者的反馈以帮助我们使以后的报告更加有用、易懂。JMA气候问题委员会顾问小组主席近藤弘树博士及其团队对我们的工作提出了中肯的意见和建议,因此我想借此机会表达对他们诚挚的敬意。

局长
服部光彦
日本气象局
回复

使用道具 举报

1025

主题

1万

帖子

1万

积分

超强台风

积分
18598
 楼主| 发表于 2011-11-24 15:57 | 显示全部楼层

Topic 1  为提升对碳循环的认识而增强对二氧化碳的观测

Topic 1  Enhancement of carbon dioxide observation for improved understanding of the carbon cycle
Topic 1  为提升对碳循环的认识而增强对二氧化碳的观测

Appropriate response to global warming requires the reduction of uncertainty in climate prediction. To this end, there is a need to accurately depict the global distribution of carbon dioxide (considered to be the main cause of global warming) and to elucidate the carbon cycle with greater levels of detail and precision. In this connection, JMA has begun two types of observation in recent years. One involves using the Agency’s research vessels for high-accuracy monitoring of carbon dioxide and related chemical materials dissolved in seawater. The capabilities of these vessels for measuring greenhouse gas amounts have been improved, and such observation has been performed in the western North Pacific since 2010. The other type involves aircraft-based monitoring of the upper air, and was started in 2011. This section gives a brief overview of these observations.

为了有效应对全球变暖的难题,就要求减少气候预测的不确定性。为此,就要求精确描述全球二氧化碳(被认为全球变暖的主要原因)分布,以更高的细节和精度阐述碳循环。为此,JMA近年已经开始了2种观测。其中之一是使用气象局的科研船隻,對二氧化碳和海水中相关化学物质进行高精度的监测。测量温室气体总量的能力已经提高,這種新式观测从2010年起已被用于西北太平洋。另一类观测是基于航空的高层大气观测,並於2011年开始。本部分将介绍这些观测的概况

1.    Importance of improved understanding of the carbon cycle and related challenges
提高对碳循环及相关挑战认识的重要性

Carbon dioxide (CO2) in the atmosphere is dissolved in seawater and absorbed by forests and phytoplankton on land and in oceans via photosynthesis. It is also emitted from land and oceans as a result of plant decomposition and the upwelling of CO2-rich seawater from deep layers. Carbon, which is a component of CO2, passes among the earth’s geosphere, hydrosphere and atmosphere in different forms as a constituent of various chemicals. This global carbon exchange system is called the carbon cycle. In the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) published in 2007, it was estimated that about half of all CO2 emitted by fossil fuel combustion remains in the atmosphere, and about a third of it is absorbed by the ocean (Figure T.1.1). In the future, the CO2 absorption capacity of land and the ocean is expected to decrease as a result of global warming progression. This will cause more CO2 to remain in the atmosphere, thereby accelerating the rate of global warming. However, it is not clearly understood how the carbon cycle would be changed by the effects of global warming, and this creates significant uncertainty in global warming projections. Accordingly, it is important to observe CO2 in the atmosphere, in the oceans and on land more accurately and more comprehensively over long periods and to improve our understanding of the carbon cycle.

大气中的二氧化碳能溶於海水,也能被森林、陆地和海洋的浮游生物通过光合作用吸收。植物的腐烂和深层高浓度二氧化碳海水的上涌,則分別是 陆地和海洋排放二氧化碳的方式。二氧化碳是碳在地球岩石圈、水圈、大气圈之间循环的一種媒介,因此成為多种不同化学物质的成份。这一全球性的碳交换系统称为碳循环。在2007年发表的政@府间气候变化委员会(IPCC)第四次评估报告中,估计向大气排放二氧化碳总量的约一半来自化石燃料,约三分之一被海洋吸收(图T.1.1)。随着全球变暖,将来陆地和海洋对二氧化碳的吸收能力可能下降。这将导致更多二氧化碳滯留於大气,进而提高全球变暖的速度。然而,全球变暖后碳循环会如何变化仍不清楚,而这大大增加了全球变暖趨勢預測的不确定性。因此,需长时间地、更精确、更广泛地监测大气、海洋和陆地中的二氧化碳,以提高我們對碳循环的认识。

However, current observations in the upper air and over oceans are very limited. The issue of how to enhance such monitoring in combination with other ground-based observations must be addressed to enable global study of the carbon cycle, and this would contribute to reducing the uncertainty of global warming projections.

然而,当前对高层大气和全部海洋的观测十分有限。我們须針對如何配合地面數據以加强这类观测的問題,這關系到是否能成功展開全球碳循环的研究,而有關研究則有助于减少全球变暖过程的不确定性。

JMA operates three ground-based observation stations (in Ryori, Iwate Prefecture; Minamitorishima, Tokyo; and Yonagunijima, Okinawa Prefecture) and two research vessels. The Meteorological Research Institute and the National Institute for Environmental Studies also carry out monitoring of greenhouse gases using commercial passenger aircraft between Japan and Australia (covered in Part III of this report). In addition, JMA has begun two types of observation in recent years for the enhancement of comprehensive greenhouse gas observation. One involves using the Agency’s research vessels for high-accuracy monitoring of carbon dioxide and related chemical materials dissolved in seawater. The capabilities of these vessels for measuring greenhouse gas amounts have been improved, and such observation has been performed in the western North Pacific since 2010. The other type involves aircraft-based monitoring of the upper air, and was started in 2011. The observational data collected are expected to enhance the basic data set to be used in understanding the carbon cycle and contribute to reducing the uncertainty of global warming projections.

JMA建立了三个地面观测站(位于岩手县绫里,东京都南鸟岛,和冲绳县与那国岛)和2个研究船。气象研究所和国家环境研究所,也利用日本与澳大利亚间的商业航班研究的温室气体排放(在本报告第三部分介绍)。另外,为加強温室气体的全面观测,JMA近年已经开始了两类观测。一类是使用气象局的科研船隻,對二氧化碳和海水中相关化学物质进行高精度的监测。船隻测量温室气体总量的能力已经提高,並从2010年起于西北太平洋進行观测。另一类观测是基于航空的高层大气观测,並从2011年开始。观测数据将增强用于认识碳循环的基础数据,也有助于减少全球变暖过程的不确定性。

11.GIF
Figure T.1.1 Circulation of carbon dioxide emitted as a result of human activities (average values for the 1990s)
The unit is the quantity of carbon conversion (Gt/year), and the figures are based on the IPCC Fourth Assessment Report (IPCC, 2007).
图T.1.1 人类活动排放的二氧化碳的循环(1990年的平均值)
单位是二氧化碳转换量(十亿吨/年),图片基于IPCC第四次评估报告(IPCC,2007)

2.    Enhancement of oceanic carbon dioxide observation
2.海洋二氧化碳观测的提高

The ocean is the earth’s largest CO2 sink, and plays a major role in the development of global warming. To promote understanding of the global carbon cycle, collaborative oceanographic observations are carried out internationally under the coordination of the International Ocean Carbon Coordination Project (IOCCP) supported by the Intergovernmental Oceanographic Commission (IOC) of the United Nations Educational, Scientific and Cultural Organization (UNESCO). JMA upgraded the oceanographic observation instruments used for high-quality measurement on board two JMA research vessels (the Ryofu Maru and the Keifu Maru) in 2010, and conducts observations of oceanic CO2 as well as related physical parameters and chemical materials in the western North Pacific.

海洋是地球最大的二氧化碳汇,在全球变暖的过程中起重要作用。为推动对碳循环的认识,联合海洋观测工程在「国际海洋碳合作計劃」的協調下(IOCCP)展开,並得到联合国教科文组织(UNESCO)的「政@府间海洋委员会」(IOC)支持。JMA在2010年升级了2艘研究船(吕布丸号和系谱丸号)上的高质量测量观测设备,同时观测西北太平洋海水的二氧化碳与相关物理参数和化学物质。

A conductivity temperature depth profiler (CTD) with a multi-bottle water sampler is lowered from the sea surface to a depth of 6,000 meters to measure temperature and salinity and collect water samples at various depths for analysis of dissolved CO2 and other chemicals in seawater (Figure T.1.2). The data are used to investigate CO2 exchange between the ocean and the atmosphere as well as the distribution and accumulation of CO2 within the ocean.

一个带有「温度深度分析传感器」(CTD)的「多瓶收集器」从海洋表面沉入6000米深度,来测量温度和盐度,並在不同深度收集水样本以分析水中的二氧化碳和其他化学物质。(图T.1.2)。数据被用来调查海洋和大气间二氧化碳的交换和海洋中二氧化碳的聚集与分布。

12.GIF
Figure T.1.2 Oceanographic instruments on board JMA research vessels
图T.1.2 JMA研究船上的海洋设备

The data collected are distributed to domestic and international agencies and research institutes through the IOCCP, and are also made available to the public via JMA’s website (http://www.data.kishou.go.jp/kaiyou/shindan/index.html). Additionally, new monitoring information concerning the oceanic carbon cycle (including data on net air-sea CO2 exchange in the Pacific and oceanic CO2 accumulation in the western North Pacific) was released in April 2011 (Figure T.1.3).

收集的数据被送往国内和国际的IOCCP研究所,也由JMA网站公开(http://www.data.kishou.go.jp/kaiyou/shindan/index.html)。另外,有关海洋碳循环的新观测信息(包括太平洋大气-海洋的二氧化碳交换、西北太平洋二氧化碳累積等數據)于2011年4月公布(图T.1.3) 。

13.GIF
Figure T.1.3 Examples of monitoring information provided on JMA’s website
Left panel: Distribution of net air-sea CO2 exchange in 2009. Positive values (red areas) indicate the emission of CO2 from the ocean to the atmosphere, and vice versa for negative values (blue areas). The values represent the weight of carbon (tC/km2/year) calculated from the amount of CO2 exchange.
Right panel: CO2 accumulation (umol/kg) along the 137E line between 1994 and 2010

图T.1.3 JMA网站提供的观测信息示例
左幅:2009年大气-海洋二氧化碳交换分布。正值(红色区域)表示二氧化碳从海洋排入大气,负值(蓝色)则相反。数值代表二氧化碳交换中碳的重量。
右幅:东经137度線1994年至2000年的二氧化碳汇

3.    Aircraft-based observation of greenhouse gases
温室气体航空观测

Anthropogenic CO2 and other greenhouse gases are emitted mainly on land before being
carried to the upper air and dispersed by atmospheric circulation. To elucidate the overall circulation process of greenhouse gases, it is necessary to monitor them in the upper air as well as over land and ocean areas. To this end, JMA began aircraft-based observation of greenhouse gases in the upper air in 2011.

人类排放的二氧化碳大部分在上升到高层大气之前被大气环流稀释了。为了阐明温室气体的整个循环过程,就有必要從海陸空進行觀測。为此,JMA2011年开始了高层大气的温室气体航空观测。

In such observation, around 20 air samples are collected in 1.7-liter titanium flasks on each flight over the western North Pacific from Tokyo to Minamitorishima. These samples are brought back to JMA headquarters for measurement of the concentrations of four trace gases: CO2, CH4, CO and N2O (Figure T.1.4 and Figure T.1.5).
在這種观测中,每从东京到南鸟岛的西北太平洋飞过一次,都有约20个空气样本被收集在1.7升的钛瓶中。这些样本被带回JMA总部进行四种微量气体的测量:CO2, CH4, CO 和 N2O。(图T.1.4和图T.1.5)

The observation data collected are provided to domestic and international agencies and research institutes through the World Data Centre for Greenhouse Gases (WDCGG), which is operated by JMA under the Global Atmosphere Watch (GAW) programme of the World Meteorological Organization (WMO). The data are also used by JMA to create analysis products related to greenhouse gases.

收集的观测数据通過「世界温室气体数据中心」(WDCGG)傳送给国内和国际的機構、研究所。WDCGG由JMA負責運\作,为世界气象组织(WMO)「全球大气观测项目」(GAW)的一部份。这些数据也被JMA用于有关温室气体的分析。

14.GIF
Figure T.1.4 Work flow of aircraft-based observation of greenhouse gases
图T.1.4 温室气体航空观测的工作流程

15.GIF
Figure T.1.5 A titanium flask (top) and a pump (bottom) for collected air samples
图T.1.5 钛瓶(上)和收集空气样本的泵(下)
回复

使用道具 举报

1025

主题

1万

帖子

1万

积分

超强台风

积分
18598
 楼主| 发表于 2011-11-28 09:09 | 显示全部楼层

Topic 2  2009/2010冬北极涛动极端负相位

Topic 2 Extremely negative Arctic Oscillation in winter 2009/2010
2009/2010冬北极涛动极端负相位

In boreal winter 2009/2010 (December 2009 – February 2010), extreme cold waves and abnormal amounts of snow were observed in the mid-latitudes of the Northern Hemisphere, including Europe, East Asia and the USA. On 3 March, 2010, JMA issued a statement on the atmospheric circulation characteristics causing these extreme climatic events in accordance with the advice of the Advisory Panel on Extreme Climatic Events1.
在2009/2010北半球冬季(2009年12月-2010年2月),强冷空气和反常的暴雪出现在北半球中纬度地区,包括欧洲、东亚和美国。2010年3月3日,JMA受极端气候事件委员会之托发布了关于引起这些事件的大气环流特征的报告。

1.        Arctic Oscillation (AO)
1.        北极涛动(AO)

The Arctic Oscillation (AO) is a major atmospheric circulation variation, exhibiting an annular pattern of sea-level pressure anomalies with one sign over the Arctic region and the opposite sign over the mid-latitudes in a seesaw fashion. The negative phase of the AO, which is characterized by positive and negative sea-level pressure anomalies over the polar region and the mid-latitudes, respectively, helps cold Arctic air move into the mid-latitudes. The positive phase, whose sea-level pressure anomaly pattern is reversed, keeps Arctic air over the polar region (Figure T.2.1).
北极涛动(AO)是一种重要的大气环流波动,表现为海平面气压异常的环形区域,一个位于北极地区,反相区位于中纬度。AO负相位由北极地区和中纬度正负海平面气压异常表征,导致极地冷空气移向中纬度。正相位即海平面气压异常特征相反,将冷空气束缚在极区。(图T.2.1)。

t21.JPG
Figure T.2.1 Negative (left) and positive (right) Arctic Oscillation
图T.2.1北极涛动负相位(左)和正相位(右)

The panel on the left (right) shows an extremely negative (positive) phase of the Arctic Oscillation in terms of three-month averaged sea-level pressure and anomaly for boreal winter 2009/2010 (1988/1989). The contours denote sea-level pressure, and “H” and “L” indicate the centers of anticyclones and cyclones, respectively. The warm (cold) shading indicates positive (negative) anomalies.
左(右)图展示了2009/2010 (1988/1989)北半球冬季由三个月平均海平面气压异常描述的北极涛动的极端负(正)相位。等高线代表海平面气压,“H”和 “L”分别表示反气旋和气旋中心。暖(冷)色表示正(负)异常。


2.        Characteristics of climate and the negative AO seen in winter 2009/2010
2.2009/2010冬AO负位相时的气候特征

In winter 2009/2010, temperatures were below normal from Europe to Russia and northern East Asia and in the USA, and were extremely low in parts of these regions (Figure T.2.2). Record-breaking heavy snowfall was observed in the UK, the USA, China and the Republic of Korea. On 19 and 20 December, 2009, daily minimum temperatures in Berlin, Germany, were below -14°C (approximately 13°C below normal). On 11 February, 2010, one observatory in Washington D.C. recorded a snow depth of 56 cm, which was the highest on record according to the National Oceanic and Atmospheric Administration (NOAA). Conversely, temperatures were extremely high from northeastern Canada to Greenland.
2009/2010冬,从欧洲到俄罗斯、东亚北部和美国气温偏低,部分地区异常偏低(图T.2.2) 。破纪录的暴雪出现在英国、美国、中国和韩国。2009年12月19、20日,德国柏林的日最低气温低于-14°C(偏低近13°C)。2010年2月11日,华盛顿的一个观测站纪录到了56 cm的积雪深度,是国家海洋大气局(NOAA)有史以来的最高值。相反,加拿大东北部到格陵兰气温异常偏高。

Figure T.2.3 illustrates the characteristics of atmospheric circulation for winter 2009/2010. High-pressure systems developed over the Arctic region, while low-pressure systems were pronounced in the mid-latitudes with a southeastward-shifted Aleutian Low and a southward-shifted Icelandic Low (compared to the normal). A negative AO was dominant, and the value of the AO index for winter 2009/2010 was the lowest on record for the season since 1979/1980 (Figure T.2.4). In conjunction with the extremely negative AO, atmospheric flows from the high latitudes to the mid-latitudes were dominant near the surface, leading to the significant advection of cold Arctic air into the mid-latitudes of Eurasia and North America.
图T.2.3显示了2009/2010冬大气环流特征。北极受高压系统控制,低压系统則籠\罩中纬度,伴隨偏东南的阿留申低压和偏南的冰岛低压(与常年相比)。AO明顯處於负相位,2009/2010冬AO指数的值为1979/1980以来的最低(图T.2.4)。受AO极端负相位影響,海平面盛行著高纬度向中纬度的气流,导致北极冷空气进入中纬度的欧洲和北美。

The Siberian High was enhanced in the high latitudes, but its extension toward the area around Japan was weaker than normal. Due to the influence of an El Niño event, the Aleutian Low was located farther east of Japan than normal, and the subtropical high to the south of Japan was stronger than usual. These conditions in the sea-level pressure field indicate that the winter monsoon around Japan was weaker than normal, and the country experienced above-normal temperatures nationwide. However, temperatures over the nation varied significantly (Figure 1.2.2, p.18), and heavy snowfall was observed in some places on the Sea of Japan side of the country due to temporarily strong cold surges in association with the significantly negative AO.
高纬度的西伯利亚高压偏强,但是它在日本附近的延伸强度偏弱。受厄尔尼诺事件影响,阿留申低压比常年离日本更远,日本以南的副热带高压偏强。这种海平面气压场形势导致日本附近的冬季风偏弱,使日本出现了全国性的气温偏高。然而,全国各地的情况各有不同(图1.2.2)。受AO极端负相位影响,相關的强冷空气亦曾偶然來襲,日本海沿岸一侧的一些地区观测到了强降雪。
t22.JPG
Figure T.2.2 Three-month mean temperature anomaly (December 2009 – February 2010)
The cold (warm) shading indicates temperatures that were below (above) normal (C). The base period for the normal is 1971 – 2000.
图T.2.2 三个月平均温度距平(2009年12月-2010年2月)
冷(暖)色表示气温偏低(高)(摄氏度)。平均气温基准值为1971-2000。
t23.JPG
Figure T.2.3 Characteristics of atmospheric circulation for boreal winter 2009/2010
High-pressure (low-pressure) systems were enhanced in the areas inside the red (purple) dashed lines. The blue vectors indicate strong cold surges. The pink (light blue) shading denotes temperatures that were above (below) normal. ● and Ⓧ indicate the center of the Aleutian Low or the Icelandic Low in normal and boreal winter 2009/2010, respectively. The yellow vector shows stronger-than-normal westerly winds along the 30 – 40N belt.
图T.2.3 2009/2010冬北半球大气环流特征
高压(低压)系统在红色(紫色)围成的区域增强。蓝色箭头表示强寒潮。粉色(浅蓝色)区域表示温度偏高(偏低)。● 和Ⓧ 分别表示阿留申低压和冰岛低压常年的位置和2009/2010冬的位置。黄色箭头表示北纬30-40度偏强的西风带。
t24.JPG
Figure T.2.4 Time-series representation of the AO index for winter (December – February) from 1979 to 2010
The AO index was developed based on empirical orthogonal function (EOF) analysis of monthly mean sea-level pressure. Smaller values of the AO index show a more significantly negative AO.
图T.2.4 1979-2010冬季(12月-2月)AO指数的逐年变化
AO指数由月平均海平面气压的经验正交函数分析得到。AO指数小则AO处于负相位。
回复

使用道具 举报

1025

主题

1万

帖子

1万

积分

超强台风

积分
18598
 楼主| 发表于 2011-11-30 16:22 | 显示全部楼层

Topic 3  2010年日本夏季酷暑

Topic 3 Japan’s extremely hot summer of 2010
2010年日本夏季酷暑

In boreal summer (June – August) 2010, Japan experienced nationwide record-breaking high temperatures. On 3 September, 2010, JMA issued a statement on the atmospheric circulation characteristics causing the extremely hot conditions and primary factors contributing to them in accordance with the advice of the Advisory Panel on Extreme Climatic Events.
2010年北半球夏季(7-8月),日本经历了全国性的破纪录高温。2010年9月3日,JMA在极端气候事件顾问小组的建议下發表聲明,指出导致极端高温的大气环流特征和主要因素。

1.        Temperature for summer 2010 in Japan
日本2010年夏季气温

The seasonal mean temperature in Japan for summer 2010 (i.e., the three-month period from June to August) was the highest since JMA’s records began in 1898, with a deviation2 of +1.64°C from the 1971 – 2000 average (Figure T.3.1), and summer mean temperatures at 55 of JMA’s 154 observatory stations were the highest since their respective records commenced. Seasonal mean temperatures in northern and eastern Japan were the highest for the summer since 1946, and that in western Japan was the fourth-highest on record. Monthly mean temperatures for August in northern, eastern and western Japan were also the highest on record since 1946. In most regions of the country, above-normal temperatures persisted throughout most of the summer.
日本2010年夏季平均气温(6-8月三个月)是1898年由记录以来的最高值,比1971 – 2000年平均值高出1.64°C (图T.3.1),JMA的154个观测站有55个的夏季平均气温创造了有史以来的最高记录。日本北部和东部的夏季平均气温是1946年以来的最高值, 日本西部是历史第四高值。北部、东部和西部的8月平均气温也是1946年以来的最高值。在全国大部分地区,偏高的气温持续了几乎整个夏天。

t31.JPG
Figure T.3.1 Long-term change in seasonal temperature anomalies for summer (June –August) from 1898 to 2010 in Japan
Anomalies are calculated as the average of temperature deviations from the 1971 – 2000 normal at 17 observation stations. The bars indicate temperature anomalies for each summer. The blue line indicates the five-year running mean, and the red line shows the long-term linear trend (+0.97°C per century).
图T.3.1 1898-2010年日本夏季(6-8月)平均气温距平的长期变化
距平计算的基准值是1971-2000年17个观测站的平均值。图中显示了每年夏天的气温距平。蓝线表示5年滑动平均,红线表示长期线性趋势(每100年升高。0.97°C)。
t32.JPG
Figure T.3.2 Five-day running mean temperature anomalies for the primary divisions of Japan from 1 June to 31 August, 2010
图T.3.2 日本各主要地区2010年6月1日至8月31日的五日滑动平均气温距平

2.        Atmospheric circulation characteristics and factors contributing to Japan’s extremely hot summer
日本酷暑的大气环流特征和产生原因

Figure T.3.3 illustrates the primary factors that may have contributed to the extremely hot summer in Japan. The relevant atmospheric circulation characteristics can be summarized as follows:
图T.3.3 说明了产生日本酷暑的主要原因。相关的大气环流特征可总结如下:

(1) The zonally averaged tropospheric air temperature in the mid-latitudes of the Northern Hemisphere was the highest for June – August since 1979.
(1) 6-8月北半球中纬度区域对流层平均气温是1979年以来的最高值。

(2) A remarkably strong anticyclone persisted over Japan.
(2)一个非常强大的反气旋维持在日本上空。

(3) Japan experienced less influence than usual from the Okhotsk High (a cool semi-stationary anticyclone).
(3)日本受鄂霍次克高压(一个冷性、少动的反气旋)的影响偏弱。

The backgrounds to these atmospheric characteristics are outlined below.
这些大气环流特征的背景如下。

Background to (1): As research so far has indicated, tropospheric air temperatures increase on a global scale after an El Niño event. Statistical examination of past La Niña events shows a tendency for higher-than-normal tropospheric air temperatures in the mid-latitudes of the Northern Hemisphere. In summer 2010, a La Niña event started following the El Niño period that ended in spring (March – May) 2010. It is therefore possible that zonally averaged tropospheric air temperatures in the mid-latitudes of the Northern Hemisphere were extremely high in summer 2010 from the influence of the El Niño event and partly due to the effects of the La Niña event. A warming trend can be identified in the zonally averaged tropospheric air temperature in the mid-latitudes of the Northern Hemisphere. This trend may be associated with global warming due to the buildup of anthropogenic greenhouse gases.
(1)的背景:目前的研究表明,一次厄尔尼诺事件之后将出现全球尺度的对流层空气升温。过去拉尼娜事件的统计检验显示,此現象會使北半球中纬度对流层气温有偏高的傾向。2010年夏,一次拉尼娜事件在厄尔尼诺於2010年春季(3-5月)结束之后隨即开始。因此,2010年夏北半球中纬度劃分区域的平均对流层气温异常偏高,可能是受到厄尔尼诺事件和部分受到拉尼娜事件的影响。其中,平均对流层气温可見一升温趋势。这一趋势可能与人为排放温室气体导致全球变暖有关。

Background to (2): After mid-July when the Baiu (Japan’s rainy season) withdrew, the subtropical jet stream in the vicinity of Japan was shifted northward of its normal position, and the Pacific High extended to the country. The Tibetan High in the upper troposphere also extended over Japan in line with the frequent northward meandering of the subtropical jet stream in the vicinity of the country, indicating that a warm anticyclone formed in the whole troposphere over Japan. Considering research performed so far and statistical investigation, it can be presumed that the northward shift of the subtropical jet in the vicinity of Japan was partly caused by enhanced convective activity across the broad region over the Indian Ocean and the surrounding seas. It is possible that the broadly active convection was associated with above-normal SSTs over the Indian Ocean and with the La Niña event. Enhanced convection from the northern South China Sea to the area northeast of the Philippines may have been partly responsible for the strength of the anticyclones seen around Japan, especially from the second half of August to early September.
(2)的背景:7月中旬梅雨季(日本的雨季)结束之后,日本附近的副热带急流抬升到了比正常偏北的位置,西太副高延伸到了本国。副热带急流频繁北抬的同時与的,对流层上部中的青藏高压也延伸到了日本上空,导致日本上空形成了贯穿整个对流层的暖性反气旋。参考目前的相关研究和统计调查,可推测日本附近副热带急流北抬一定程度上,是由印度洋及周边海域的广大地区的对流活动增强引起。如此广泛的对流活动,可能和印度洋SST偏高及拉尼娜事件有关。南海北部到菲律宾的对流增强可能一定程度上增强了日本的反气旋,特别是在八月下半月到九月初。

Background to (3): In June, zonally elongated warm anticyclones frequently covered Japan, particularly its northern parts, resulting in above-normal temperatures across most of the country. In the period from June to the first half of July, the Okhotsk High was less developed in 2010 than in past years. In the second half of July, the phenomenon temporarily appeared but influenced Japan little due to the northward shift of the subtropical jet near the country and the strong Pacific High to its east.
(3)的背景:6月,範圍偏大的反气旋频繁控制日本,特别是其北部,导致全国多数地方气温偏高。从6月到7月上半月,鄂霍茨克高压比往年偏弱。7月下半月,这一现象又短暂出现,但由于日本周围的副热带急流北抬以及东面强大的西太副高,其对日本造成的影响较小。
t33.JPG
Figure T.3.3 Primary factors contributing to Japan’s extremely hot summer (June – August) of 2010
Here, (1), (2) and (3) correspond to the numbers in the main text of Topic 3.
图T.3.3 造成2010年日本酷暑(6-8月)的主要因素
这里,(1) (2) (3)对应Topic 3正文中的数字。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|台风论坛 ( 沪ICP备11041484号-3 )

GMT+8, 2020-7-5 02:15

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表